Seismicity at Old Faithful Geyser: an Isolated Source of Geothermal Noise and Possible Analogue of Volcanic Seismicity
نویسندگان
چکیده
Kieffer, S.W., 1984. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H20 rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seis-micity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seis-micity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds …
منابع مشابه
Discriminating Characteristics of Tectonic and Human‐Induced Seismicity
We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of end-member areas known to be dominated by humaninduced earthquakes (The Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jac...
متن کاملDetermining the Maximum Depth of Hydrothermal Circulation Using Geothermal Mapping and Seismicity to Delineate the Depth to Brittle-Plastic Transition in Northern Honshu, Japan
This paper defines the maximum possible vertical extent of hydrothermal circulation in granitic crust, and thus the maximum depth within which geothermal reservoirs can be encountered. To evaluate prospective geothermal fields we constructed a geothermal database in northern Honshu, Japan that includes 571 points of thermal data of existing wells and hot springs. Depth-temperature curves were n...
متن کاملA Review on Environmental aspects of geothermal energ
New energy technologies, along with the benefits, are associated with challenges and Difficulties. Geothermal energy as one of the renewable energies is a clean and sustainable energy source, yet its development still has some impact on the environment such as: greenhouse gas emissions, noise pollution, surface and groundwater contamination, subsidence, and seismicity. This paper provides a bri...
متن کاملChanges in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7 . 9 Denali fault earthquake , Alaska
Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and a series of local earthquake swarms were observed in the Yellowstone National Park area, despite the large distance of 3100 km from the epicenter. Several geysers altered their eruption frequency within hours after the arrival of large-amplitude surface waves from the Denali fault earthquake. In addition, ear...
متن کاملIntermediate - Term Declines in Seismicity at Mt . Wrangell
The Mw 7.9 Denali fault earthquake ruptured segments of the Susitna Glacier, Denali, and Totschunda faults in central Alaska, providing a unique opportunity to look for intermediate-term (weeks to months) responses of active volcanoes to shaking from a large earthquake. The Alaska Volcano Observatory (AVO) monitors 24 volcanoes with seismograph networks. We examined one station per volcano. Dig...
متن کامل